Casimir interaction of strained graphene
نویسندگان
چکیده
منابع مشابه
Interaction-Driven Metal-Insulator Transition in Strained Graphene.
The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between π electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that, without strain, graphene r...
متن کاملEffective Hamiltonian of strained graphene.
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The re...
متن کاملCovalent functionalization of strained graphene.
An enhancement of the chemical activity of graphene is evidenced by first-principles modelling of the chemisorption of hydrogen, fluorine, oxygen and hydroxyl groups on strained graphene. For the case of negative strain or compression, chemisorption of the single hydrogen, fluorine or hydroxyl group is energetically more favourable than those of their pairs on different sublattices. This behavi...
متن کاملCasimir interactions in graphene systems
The non-retarded Casimir interaction (van der Waals interaction) between two free standing graphene sheets as well as between a graphene sheet and a substrate is determined. We present several different derivations of the interaction. An exact analytical expression is given for the dielectric function of graphene along the imaginary frequency axis within the random phase approximation for arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2017
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2017.05.040